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1. Introduction

Certain applications require that synchromzed clocks be available to processors in a distributed
system. For example, the accuracy of performance statistics computed in terms of elapsed time
between events at different sites depends on how closely the clocks at participating sites are syn-
chronized. Also, timeouts and other time-based synchronization schemes (such as the state-machine
approach [Lampoit 84]) involve delays that are proportional to how closely clocks at participating
sites are synchronized. And, real-time process control systems require that accurate timestamps be

assigned to sensor values so that these values can be correctly interpreted. |

t Other applications further require that clocks advance at approximately the same rate as real
time. To ensure that deadlines can be met in real-time process-conirol applications, tasks are usually
broken into srall computations and scheduled based on the processor clock. If a clock synchroniza-
tion protocol suddenly sets that clock forward, thereby momentarily increasing its rate, the processor
might not be able to hi “dle in a tirnely manner all the tusks that become due. Also, clocks are some-
times used to assign tiraestaraps to events so that it is possibl:: to infer potential causality between
events. For example, creation times of files :re usually taken to define the order in which those files
were created. A clock synchronization protocol that suddeniy sets a clock back cculd destroy the
: consistency of time with respect to potential causality.

Even if we could start all processor ¢locks at the same time, they probably would not remain
, synchronized for long. Crystal clocks found in today’s processors run at rates that differ by as much
as 1078 seconds per second from real time and thus can drift apart by 1 second every 10 days; clocks
based on power-line frequency can drift considerably more than this—when used as a time base, the
power grid in the Northeastern United States typically drifts 4 to 6 seconds from real time over the
course of an evening [Mills 85]. Keeping clocks in a distributed system synchronized without
appealing to a single, centralized, time service requires that clock values be exchanged and clocks
periodically adjusted. If failures can result in faulty processors exhibiting arbitrary behavior, then the
protocol has the additionai burden of tolerating erroneous and inconsistent clock values.

This paper gives a single paradigm and correctness proof that can be used to understand all pub-
lished! fault-tolerant protocols for keeping clocks in a distributed system syncbronized despite faulty
processors that can cxhibit arbitrary behavior. The paradigm allows us to identify the different imple-
mentation choices made by each protocol in solving three subproblems it defines. This permits the

!E.g.. [Babaoglu & Drummond 87], [Cristian et al. 86], [Halpern et al. 84], [Kopetz & Ochsenreiter 87], [Lamport &
Melliar-Smith 84), [Lampoit & Meliiar-Smith 85), [Lundelius & Lynch 84), [Mahaney & Schneider 85), and [Srikanth &
Toueg 85].
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various Byzantine clock synchronization promcols2 to be compared and the contributions of each to
be isolated. Previously, clock synchronization algorithms were viewed in terms of three distinct
classes: those based on convergence, those based on agreement, and those based on diffusion or
flooding of messages. Our proof is interesting because it necessarily generalizes all of the correctness
proofs that have appeared for the individual clock synchronization algorithms. Also, it is the first
proof in which clocks are treated as advancing at discrete times ("ticks"). Previous proofs modeled
clocks as monotonical'y increasing functions form real time to clock time,

The remainder of the paper is organized as follows. Our clock synchionization paradigm is
described in section 2. Techniques for reading clocks across a computer-communications network
are described in section 3. In section 4, we discuss properties of convergence functions, the central
component of e paradigm, and give some examples of convergence functions. ‘ection 5 discusses
how agreement protocols can be used in implementing a convergence function. Conclusions and
related work appear in section 6. Appendix 1 analyzes the performance of clock synchronization pro-
tocols derived from our paradigm and derives bounds for various parameters of such a protocol;
appendix 2 contains a glossary of the notation used in the paper.

2. A Paradigm for Clock Synchronization

The hardware clock at a correct processor p can be viewed as implementing a function c,. This
function maps a real time ¢ to a clock time ¢,/ ), is non-decreasing in its argument, ard is character-
ized by positive constants J, p, and x. Constant p defines the range of initial values of the clock:

Hardware Initial Value: 0 < ¢,(0) < p. 2.1

Constants x and p restrict the rate that clock time increases as a function of real time. Physical clocks
are counters that increase by 1 in response to periodically generated events called ticks. Ii: a physical
clock, the (real time) interval between ticks can vary and this can cause the clock value to advance at
a different rate than real time. For our purposes, it is more convenient to model a hardware clock as
having a fixed (real time) interval x between ticks, but advancing by a varying real number value v,
where (1-p)x<Sv<(1+p)x, in response to each tick. That is, we require

t+K)—c, (¢
Hardware Rate: 0 < 1-p < Eﬂ(——i—"(l

< 1+p for0st, 2.2)

where X is called the tick wi-th and p the drift rate of the clock. Notice that (2.2) does not require the
value of c, to remain fixed between successive ticks although for most clocks this will be the :ase;

?In the distributed computing literature, arbitrary behavior in vesponse to a failure is called Byzantine behavior. Clock
synchronization protocols that can tolerate such failures are called Byzantine clr:k synchronization protocols.
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{{ardware Rate (2.2) merely ensurcs that rate at which the clock advances is within p of the rate at
which real time passes.

We make no assumptions about the behavior of clocks at faulty processors—ot even that they
can be modeled by functions. A clock at a faulty processor need not increase as real time passes and
might give ina‘curate or conflicting information when it is read.

A clock s mchronization protocol implements a virtual clock ¢, at each processor p. A virtual
clock, like a hatdware clock, is a function that maps real time ¢ to clock time ¢,(¢), is non-decreasing
in its argument, ‘and is characterized by positive constants i, p, and « such that for correct processors
pandq

Virtual Synchronization: Ié,(t)--é,(t)l <8 for0s:, 2.3)

i,(tﬂ"c)—&,(:)

Virtval Rate: 0 < 1-p < < 14p forOse. (2.4)

X

8 characterizes how closely virtual clocks are synchronized with each other;  is the drift rate of vir-
tual clocks; and K specifies the (real-time) interval between virtual-lock ticks.

If a reliable time source is available, then satisfying (2.3) and (2.4) is simple. The reliable time
source periodically distributes the correct time to all processors and, upon receipt of this correct time,
a processor adjusts its virtual clock accordingly. Provided the time is distributed frequently enough,
processor clocks will not drift too far apart in the interval between adjustments, so (2.3) will be main-
tained. And, provided no processor has to adjust its clock by too much, the adjustment can be spread
over the interval that precedes the next resynchronization and (2.4) will be maintained. We have only
to implement the reliable time source.

The reliable time source serves two functions in the clock synchronization protocol just out-
lined. First, it periodically generates an event that when detected by a correct processor causes that
processor to resynchronize its clock. This can be formalized in terms of CONSLants * iy, 7 ey, and B
as:

RTS1: A reliable time source generates a sequence of events at real times tkys, thys ... such
that

thrs =0 A (Vi: 0K Foin SURS =1h75 SF maz)
and the real time ¢}, at which a processor p detects the event produced at tiry satisfies

=0 A (Vi: 1Si: 0Sth—thys <P).
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(Choosing thys =t} =0 models the fact that the protoco! and clocks start at real time 0).

Second, in addition to causing events, the reliable time source facilitates clock synchronization
by providing a value to each correct processor.

RTS2: At ¢}, processor p obtains a value Vj, that can be used in adjusting ¢, to be consistent
with (2.3) and (2.4).

There are two things to note about RTS1 and RTS2. Firs?, these properties do not imply that the
correct time is always available to processors—only that it is available periodically. Having a reli-
able time source from which the correct time is always available results in a different clock synchron-
ization paradigm than the one just described.? Second, RTS2 does not stipulate that the same value be
obtained by every processor—only that the value provided can be used to achieve (2.3) and (2.4).
This permits values obtained by different processors to be compensated for known delays due to pro-
toco! execution and message delivery.

Although it is easy to satisfy RTS1 and RTS2 using a single clock, the resuiting time source is
only as fzult tolerant as that clock is. A reliabls time source that does not depend on correct operation
of a single clock can be constructed by using approximately synchronized clocks in a distributed sys-
tem. RTS1 is achieved by using the indivicual processer clocks to signal the periodic resynchroniza-
tion events; RTS2 is achieved by having processors compute some type of fault-tolerant average of
the values of the clocks at processors in the system.

To describe the implementation of RTS1 and RTS2 in a distributed system, it will be con-
; venient to view resetting a virtual clock ¢, as starting another virtual clock that runs concurrenily
with the old one. Thus, initially (i.e. at real time 0) p uses virtual clock E,‘ and p starts a new virtual
clock ¢;*! at real time #;*!, when it detects the resynchronization event produced at time ¢is. Using
this convention, the vaiue of c,(t) is characterized by

thse<tit! = Sp(0)=E,0).
A virtual clock E,‘; is implemented at processcr p using the hardware clock c, at processor p and

adding an adjustment value that is maintained by the clock synchronization protocol. Formally, this
is given by

Cal) m cp() + FIXp(c,p()) @.5)

3While we have been able to design clock synchronization pretocols based on this other paradigm, we have so far been
unable to develop a generic proof of correctness for them.

4-

mmmmmmmmnmﬁnmuuﬂkwm\mm&mmmmmmmmwwoé



where le}(T) is a function from clock time at processor p to a correction for hardware clock c,.‘
Thus, p reads 6;' at real time ¢ by reading ¢, and then adding the appropriate adjustment value based
on the current value of FIX:.

So that a virtual clock does not violate Virtual Rate (2.4), the value of FIX ;', must change gradu-
ally as a function of time. Therefore, FIX},(T) spreads any change in its correction to c, over adjust-
ment interval Al clock seconds, a parameier of the protocol. The following definition of FIX}(T)
achieves this. In it, adji™! is the adjustment to c, necessary to implement ¢, and adjj, is the adjust-
ment to implement ¢, so adji—adji™! is the additional amount that FIX} must add to c, over the A/
clock-second interval starting from ¢ in order to approach ¢,:

(adjp, - adjy™ Xmin(T=c,(t), Al))
=7 .

The key to this definition is that 0Smin(T—c,(¢}), AT)SA/, so that the change from adj5™ to adjb, is
gradually spread out over A/ clork seconds.

FIX\(T) = adji™ +

For FIX ,'. to work, A/ must be long enough to avoid violating the drift rate bounds for E, in Vir-
tual Rate (2.4); however, it must not be too long or else Virtual Synchronization (2.3) cculd be
violated or the next superscripted clock might be started before the fuil adjustment has been com-
pleted, leaving an even larger adjustment to be performed. The case where A/<x is called instan-
taneous resynchronization; otherwise continuous resynchronization occurs. Appendix 1 characterizes
values for A/ and other parameters cf our paradigm that ensure Virtual Synchronization (2.3) and Vir-
tual Rate (2.4) hold.

To implement RTS2, we use a function CF that essentially averages the values of the approxi-
mately synchronized clocks at correct processors in the syste:n. In a system of N processors, Vf,*‘ of
RTS2 is defined by®

Vil=CF(p, S{(t*), ... (6

where CF is called a convergence function because it brings clocks closer togeiher. Given this
definition of Vi*!,

adji = CF(p, e{(t5*) . CREETY) = cp(e*!) 2.6)

is the amount that c,(t5*") differs from ,(¢;*') and we can now give the clock synchronization

“In this paper, clock times are denoted by upper-case letters and real times by lower-case letters.

SEvaluating CF(p, &1 (1), ... Cx((5™)) seemingly requires that p be able w0 read at the same instant all the virtual
clocks maintained by other processors. Section 3 explains how to get around this problem.

-5-
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protocol for a processor p in a distributed system consisting of N processors. It appears in Figure
2.1.5 Three important things about that protocol are unspecified. They are

o the implementation of "detect event generated at time 54",
¢  how one processor reads the virtual clocks at other processors, and
e  convergence function CF.

Different choices for these result in different clock synchronization protocols. In fact, the various
choices permit viewing in terms of our paradigm all the published clock synchronization protocols
that do ot make use of an extcmal time source.

Much of this paper is, therefore, devoted to different implementation choices for the unspecified
aspects of Figure 2.1. The remainder of this section discusses different implementations of "d.tect
event Jenerated at time tif}". Section 3 discusses methods ways that one processor can read the vir-
tual clocks at other processors. And, sections 4 and 5 give properties and sxamples of convergence
functions.

i=1
adj8 :=0; adj} =0,
do forever
detect event generated at time tf7y;
‘;ﬂ := real time now;
adj;"+l =CF(p, Ef(‘;“). o ‘_‘:1:"(‘;',4-1)) _ cp(t;,*‘);
i=i+l
od

Figure 2.1. Clock synchronization protocol

*There and throughout, we use the notational device “f ;= real time now" &s a way to talk about the value of a ciock
during execution. Variable ¢ is not actually implemented and is not directly accessible to the program, although ¢, (t) is.

-6-
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Detecting Resynchronization Events

An obvious approach to implementing "detect event generated at time tih}" uses the approxi-
mately synchronized virtual clocks. For some predefined value R, each processor p waits until E;'
reads iR before starting ¢,*!. Either an interval timer or busy-waiting can be employed to implement
this waiting.

In this scheme, thrs is the earliest real time that some correct processor’s virtual clock has value
iR. Since virtual clocks at correct processors can advance as quickly as 1+p clock seconds per real
second, 7 =R /(1+p); and since they can advance as slowly as 1-p clock seconds per real second,
7 max*R/(1-p). To compute B, note that at the time the fastest correct clock reads iR, due to (2.3) the
slowest correct clock must read at least iR =b. Thus, this (slow) correct clock might take as long as
8/(1-p) real seconds until it reaches iR; so, B=5/(1--p).

Another implementation of "detect event generated at time ¢i54" is for each processor to broad-
cast a message when its virtuul clock reaches some predefined value and to resynchronize when such
a message has been received from a cormrect processor. Here, B is bounded by the variance in the
(real-time) delay of performing the broadcast. The details of this scheme, which is based on a simple
form of agreement, are given in section S.

3. Reading Clocks from Afar

Processors have access to clock time, not real tiine. This means that in order for a processor p
to obtain the arguments to CF needed to compute adji™ (see (2.6)), p must obtain c,(¢5*), &, (6*).
EN(t;*“), which requires that it read N clocks simultaneously. This is impossible for two reasons.
First, without special hardware a processor can read only one clock at a time. Second, in a distributed
system, processors do not necessarily have access to each others’ clocks.

One solution to both of these problems is for each processor locally to implement approxima-
tions of the virtual clocks ar other processors. Processor p maintains a collection of tables t},[l N
that can be used to compute an approximation for ¢j(f), and p approximates ¢ 4(f) at real time ¢ by
cp(t)+15lg]. Thus, p can approximate ¢y (¢5*!), ..., En(e*'), simply by reading co(¢5*) once and
using it and <}, to compute the N values needed.

In one technique to construct t), first described in [Lamport & Melliar-Smith 84), processor p
periodica.y communicates with the other processors in the system. Suppose the minimum and max-
imum delays (according to the clock at any correct processor) incurred in sending a message from one
correct processor to another, receiving it, and processing it, are Iy, and I, A processor p can
compute t5[q] by executing

g
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send "i* clock time?" to ¢;

receive C from ¢ timeout after 2T ::
if timed-out then C ‘mes;

. laow = real time now;

; @] = C=(Cp(taow)~Tmin)

Processor q responds to a "i** clock time?" request from p by sending back ¢4 (fpry ), Where tryy is the
real time the reply is sent.

Define clock reading error Ai(q) to be the errot in p's approximation of &;. Let A be the max-
imum clock reading error for any pair of correct processors. That is,

(Vp.gui: 133(0) = ¢ ()-T}[q]l S Ay(g) S A).

g In order to bound A, first note that p's approximation of ¢'s clock can drift away from ¢'s clock by at

| most p+p clock seconds per real second because the rate error of ¢ is bounded by 5 and the rate

f error of c, is bounded by p. Initially, T}[q] is in error by at mOst [egx—Fmia Since only T, of the

] message delay incurred by ¢'s response to p's time request is accounted fot in the calculation of
ti[q). Thus, at (real) time ¢, A}(q) satisfies

7(@) S Tiax = Fin + (@ +P)2~Iread,(q)) S A G

| where iread,(q) is the real time that p last executed an assignment to 7,[¢] in the clock reading pro-
tocol above. Although Ai(q> is a function of ¢. an upper bound on t—lread,(q) is usually known, and
therefore A can be treated as a constant.

Error A}(¢) can be kept small by recomputing t,[¢] frequently, thereby keeping ¢-iready(q)
small. In practice, it susfices to obtain clock values from all processors just before computing ad i
| becau= this minimiz=s the clock reading error just before the clock values are actually needed. How-
ever, for reasonable intervals r—lread,(q), (P+pXt—Iready(q)) <Y max — Tmia: SO minimizing the
uncertainty in the network delay is the key to reducing l.f,(q). Uncertainty in network delay can be
reduced by installing the clock reading protocol in the lowest level of the operating system. This is
because a large part of the uncertainty in network delay can be attributed to uncertainty in program
execution time due to interrupts and other forms of multiprogramming. The time it takes a message
to traverse a wire connecting computers does not have a high variance. Even when messages are

routed through intermediate sites, delays due to queuing in sites doing relaying can be measured and
recorded in the message and therefore can be accounted for.

A variation on the clock reading scheine just given, used in the clock synchronizaticn protoco’
of [Babaoglu & Drummond 87}, [Cristian et al. 86], [Halpem et al. 84), [Lundclius & Lynch 84], and
(Srikanth & Toueg 85], reduces the number of messages by half but can increase clock reading error.




Instead of requesting the time, sach processor ¢ periodically broadcasts its virtual clock value (includ-
ing superscript #). Upon receipt of such a message, the receiver p updates tf,[q] as follows.

receive C from¢q

taow ‘= T2l time now;

(9] = C=(Cp(taow)—T'min)

The reduction in number of messages sent using this scheme is due to lack of explicit request
messages—the passage of time, rater than an explicit request message, causes transmission of a
clock value. However, in a point-to-point network, clock reading errors can increase when this
scheme is used. This increase is because a processor p does not necessarily know what communica-
tions line it should monitor for the next clock message it will receive. Polling communications
lines—even when done by procesaor microcode—increases I, since it is possible for a message to
remain queued at the receiver for an entire polling cycle. Since polling does not increase I, the
effect is t0 increase Iy, — Fia, Which, according to (3.1), increases Ai(g). Local area networks,
which usually have a tingle connection between the processor and network, do not have this problem.

4. Convergence Functions

A convergence function CF for use in a system of N processors is a function of N+1 arguments
that satisfies certain properties. The first argument identifies the processor evaluating CF; each of the
following arguments x,, 1S SN, is a value from processor . The properties required of conver-
gence functions are given below. These properties are used in the proofs of Virtual Synchronization
(2.3) and Virtual Rate 72.4) given in Appendix 1. Thus, this abstract characterization of convergence
functions is what permits the single set of proofs of Appendix 1 tc apply to a collection of clock syn-
chronization protocols.

The first property required for a function CF to be a convergence function is th{. it be monoton-
ically non-decreasing in its last N arguments.

Monotonicity: If (Vi: 1SiSN: x;Sy;) then CF(p,x),...xy) S CF(p,y1, ... JN)-

When CF is used for clock synchronization, arguments x, through ay are time values, and this pro-
perty states thrt the value of the Reliable Time Source does not decrzase as time passes.

The next property asserts that the relative magnitudes of the virtual clock values—and not their
absolute values—matter when they are combined to produce the value provided to p for RTS2. Thus,
CF satisfies

Translation Invariance: CF(p,x+v, ... xy+v) = CF(p, x}, ... Xx)+Vv for 0Sv,

This property allows values of CF computed by different processors at different times to be

-9-
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compared. If in the evaluation of CF by one processor, the values of arguments x, thruugh xy are
shifted by the same amount (reflecting the passage of time) from the values used by the other, then
the result computed by the first will be shifted by that amount from the result computed by the
second.

Third, we require that the values of CF for two different processors p and ¢ using similar values
for at least N—k corresponding arguments be closer than x, and x, were. This is the reason CF is
called a "convergence function”. The utility of a convergence function in thiz regard is characterized
by a constant & called the fauls-tolerance degree and a function » called the precision.” Fault-
tolerance degree specifies the number of argument values that can differ significantly in the evalua-
tion of CF by p and the evaluation of CF by ¢ without greatly affecting the difference in the results;

precision specifies how closs together values obtained by these two evaluatons must be. This is for-
malized by the

Precision Enhancement Property: | CF(P,x), ... xn) = CF(@. Y1, ....yN) | S ®(§, &) if
(a) at least N—& of the x;'s are within § of each other,

(b) the y;'s corresponding to those N-k x;'s are within § of each other, and
(c) for each of the N -k argument pairs, ly;—x;| S €.

Conditions (a) and (b) define 8 to be the width of the interval spanned by values from correct proces-
sors; when using CF to implemexit a reliable time source, this condition is satisfied if virtual clocks at
correct processors are synchronized to within § when read by p and ¢q. Condition (c) stipulates that
corresponding (correct) arguments to CF are at most € apart; for a reliable time source, this condition
is satisfied if two values obtained by reading the same virtual clock v (real) seconds apart, for small
values of v, do not differ by more than v+€ as a result of drift.

The Precision Enhancement Property states that in order for CF 10 be a convergence function,
two evaluations must produce values that are close—at most x(3, &) apart—provided correct values
are within §, even though the values used for k of the arguments (presumably, from faulty processors)
differ arbitrarily and each remaining pair of corresponding arguments differs by at most €. Provided
®(3, €) < 8, CF implements a time source that fumishes different processors with time values that are

TOur use of the term precision is based on its usual definition in connection with data and error analysis in the physical
sciences [Bevington 69]. There, “precision” is a measure of how exactly a result is determined and. therefore, how reprodu-
cible that result is. When used in this sense, precision aserts nothing about whether the result is close %0 the quantity actual-
ly being measured—juat that it is close to other results that measure that quantity. The term “accuracy” is reserved for
characterizing how close a result is to the true value it measures.
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closer than the least synchronized virtual clocks at correct processors.

The final property of a convergence function C™ asserts that CF (p, x, ..., Xxy) is not more than
o(5) away from ariy correct argument, where any argument found within a 8 width interval contain-
ing N—k or more arguments is considered correct.

Accuracy Preservation Property: Let Xy be a subset of x1, ..., xy whose members are “vithin
dof N-k-1ofxy, .., xx. Then,

(%p: X € Xox: | Xp — CF(p,xy,...xy) 1 S 2(3)).
An obvious consequence of this definition is
ad)<8. 4.1
When CF is used as a reliable time source and correct clocks are synchronized to within 8, o(3)

bounds the maximum amount by which virtual clock at a processor p must be adjusted. That is, for
all correct processors p:

(Vi: 0<i: ladjit! -adj} 1 SoB)). 4.2
Function a is called the accuracy of CF. This (in the sense of [Bevington 69]) is an apt name

for two reasons. First, a bounds the rate change made to a virtual clock EP (through FIX,), thereby
bounding the "accuracy" of the rate cf that virtual clock. Second, insofar as the clock at any correct

processor ¢ approximates the real time and is therefore considered the true value of interest, o bounds
the difference between the value of a newly reset virtual clock and that true valuc.

Examples of functions that satisfy the three properties of convergence functions include:

Egocentric Average: CFg,(p, x,,..., xy) is the average of all arguments x; through xy that are
no more than § from x,.

Fast Convergence Algorithm: CFrcs(p, x), ..., xn) is the average of all arguments x, through
xy that are within  of at least N—k other arguments.

Fault-tolerant Midpoint: C¥Fy(p, x,, ..., xy) is the midpoint of the range spanned by argu-
ments x, through xy after the & highest and & lowest values have been discarded.

Fault-tolerant Average: CF,,,(p, X,,..., xn) is the average of arguments x; through xy after
the £ highest and k lowest valuc ; have been discarded.

The fault-tolerance degree &, precision nt(3, €) when there are f faulty processors, precision when f=k
as N goes to infinity, and accuracy o(8) for each of the above functions is given in Figure 4.1. The
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Name Fault-tolerance | Precision n(5, €) | Worst Precision Accuracy 0(8)
degree k (f faults) (i.e. N>oo f=k)
CFga N=L 2'@4'8 d+¢ 43
3 N
N-1 25 2 @
CF FCA 3 N +£€ 3 +€ 3
CFumia ﬂ;—l- —+€ —+€ 3
N-1 _fo
Cfﬂhw 3 ﬁ'-2kl+e O+€ )
N=L ) 3 45
CFcca 3 N +€ 3 +g 3
CFay® el 20 2A 5
Tz (14P T rax (14
CFrw SEI® N-1 Trex 14P) Lra0) | 42(5-T)
(1-p) (1-p)
- T ez (1P [ ez (1+P
CFrw SE2% N-1 __’""_‘(_A_p)_ _N.L(Tpl Tpax+8=Tmin
2 (1-p) (1-p)

other Convergence Functions mentioned in the figure are discussed in section 5. CFg4 was first
presented and analyzed in [Lamport & Melliar-Smith 85] in connection with their interactive

Figure 4.1. Properties of Convergence Functions

$Assumes digital signatures.
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convergence clock synchronization algorithm, CFgc4 was proposed in [Mahaney & Schneider 85).
CFp;a ad CF,,, are given in [Dolev et al. 83]; CF,,, is the basis for the clock synchronization pro-
tocol of [Lundelius & Lynch 84] and the (AMI S65C60) VLSI clock synchronization chip described
by [Kopetz & Ochsenreiter 87]. Characterizing convergence functions ir terms of precision and
accuracy was first done by [Mahaney & Schneider 85); most of the precision and accuracy functions
given in Figure 4.1 were first reported there,

5. Using Agreement for Convergence

An agreement protocol allows correct processors in a distributed system to agree on an action
or a set of values. This can help in two ways when impiementing a Reliable Time Source. First, use
of an agreement protocol to disseminate a signal that causes processors to resynchronize clocks can
be used to satisfy RTS1. Second, use of an agreement protocol to disseminate each processor’s clock
can ensure that arguments in corresponding positions in evaluations of CF performed by different
processors are equal, thereby enhancing the precision of € and helping to satisfy RTS2.

Crusader’s Agreement [Dolev 82] allows a disignated processor, called the transmitier, to
disseminate a value in such a way that:

CRUIL: All correct processors that do not "know" that the transmitter is fauity agree on the
same value.

CRU2: If the transmitter is correct then all correct prozessors agree on :ts value.
Thus, Crusader’s Agreement potentially partitions processors into three classcs: those that are faulty,

! those that are correct and "know" that the transmitter is faulty, and those that are correct and have |

agreed among themselves on a value from the ones sent by the transmitter.” Crusader’s Agreement is
simple and inexpensive to implement in a distributed system where fewer than 1/3 of the processors

i are faulty and reliable communications is possible.!?

By:zantine Agreement [Lamport et al. 82] is stronger (but more expensive to achieve) than
Crusader's Agreement—all cormct processors agree on a value whether or not the transmitter is
faulty:

BYZ1: All correct processors agree on the sare value.

%If the transmitter is ¢ orrect then the set of correct processors that "know" that the transmitter is faulty will be empty.

19A commuications failure can always be viewed as a fuilure of either the sending or receiving processor. Assuming
reliable message delivery here is mersly an expository convenience.
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RYZ2: If the transmitter is correci then ali correct processors agree on its value.

The literature contains numerous protocols for establishing Byzantine Agreement. An early survey of
the area appears in [Fisher 83] and a tutorial in [Schueider 85].

5.J. Agreement with Clocks

Protocols to implement Crusader’s Agreement and Byzantine Agreement usually proceed as a
series of rounds. In the first round, the transmitter sends its value to every other processor. In subse-
quent rounds, each processor sends a copy of evary value it has received to every other processor.
Eventually, each processor selects one from among the set of values it has received. The criteria for
selection d2pend on the protocol-—use of median or mode is not unusual. Relaying messages through
different paths, although seemingly inefficient, is necessarv because it prevents correct processors
from being confounded by inconsistent values sent along different routes hy faulty processors.

An agreement protocol intended for disseminating values must be modified for use in dissem-
inating clocks. This is because, while operations like making copies of values and sending such
copics through a network are simple, making copies of clocks and sending them through a netwoik is
not. The key to avoiding this problem is io compute and send clock differences rather than the clocks
themselves [Lamport & Melliar-Smith 84].

To implement this scheme, & is encoded as a triple {proc, i, offset) that specifies ¢; has differ-
ence offset from ¢ fyo. Thus, ¢;(¢) can he approximated by a processor p as c,(¢)+1,[proc]+offset.
This allows p to copy and send ¢4 to another processor ¢ by executing

send {proc, i, vffset) to q.
Processor q receives this copy by executing
receive {proc’, e, offset”)
and thereafter approximates ¢, at time ¢ by evaluating cq(O+1glproc’)+affset’.

When a clock is approximated in this manner, error is intrcduced by passing that clock from p
to q because c,(t)+t4[proc] is only an approximation for ¢joc(f). This means copies of ¢4 that
traverse different routes and are received by a single processor might not be identical, even though
they should be. Consequently, equality tests or selection of a clock based on the mode of a set of
clocks received cannot be used when clocks are passed around the system in this fashion.

Two schemes have been devised for modifying an agreement protocol to avoid these problems
with inequality of clock copies. The first is for the agreement protocol to be formulated in a way that
avoids using equality tests to select one from among the different (clock) copies received. Lamport
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and Melliar-Smith use this technique in their Byzantine Agreement protoccls for' clocks, which are
based on Byzantine Agreement protocols [Lamport ¢t al. 82] that take the median of the set of values
received, and hence do not use equality of values. The second way to avoid the inequality of clock
copies protlem is to consider 2 collection of clocks "equal” if all are within 2A of some clock value
in that collection. (Recall, A is the maximum clock reading error between ary pair of processes.)
Mahanev and Schneider use this approach to modify the Crusaders Agreement protocol of {Zolev
82], which uses equality of values, to hand!2 clocks [Mahaney & Schneider 85].

5.2. Obtaining Faster Convergence by Agreement

The Crusader’s Convergence Algorithm CFcc4 of [Mahaney & Schneider 85] is the result of
employing Crusader’s Agreement to disseminate values before applying CFrcy4.

] Crusader’s Convergence: CFcc, is:
(1) Each processor employs the Crusader’s Agreement protocol to disseminate its clock.

{2) The value of CFcc, at processor p is the result of p applying CFrc4 to the set of clocks
received.

} CFca has half the precision of CFgc, (i.e. convergence is twice as good) because due to CRU1 of
Crusaders Agreement, it is not possible for correct processors p and ¢ to use values for ¢, (¢) that '
differ by more than 2A unless one of p and ¢ "knows" that r is faulty, in which case it can ignore ¢,(t) ;
completely. CFccy has the same accuracy and degree of fauit tolerance as CFpc,. It is interesting to :
note that when CFpc, is iterated twice—which requires the same two rounds of message exchange as i
the Crusaders Agreement used in CFcc,—the worst case precision is 48/9, clearly inferior to the /3 l
i
|
|
|
{
|

precision achieved when the two rounds of message exchange is used for a Crusader’s Agreement.
Employing Crusader’s Agreement before CFgy, CFpig and CF,,, also results in precision improve-
ments for those convergence functions.

When a Byzantine Agreement is used to disseminate clocks, all correct processors agree within
2A on an approximation for the clock at each processor, due to BYZ! and the error bounds in approx-
imating clocks. Correct processors evaluating a convergence function will then differ by at most 2A
in values in corresponding argument positions. Define Sel; to be a function that retums its 2" largest
argument. If we employ a Byzantine Agreement protocol that can tolerate & failures to disseminate
arguments used in Sel,,, then we obtain a convergence function CFp,, for clock synchronization:

Byzantine Convergence: CFp, is: |

(1) Each processor employs the Byzantine Agreement pretocol to disseminate its clock.
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(2) The value of CFpy, at processor p is the result of p applying Sely,; to the set of clocks
received. '

Provided there are & or fewer failures, Sel,,; at a correct processor p selects a cluck that is guaranteed
to read within £=2A of the clock selected by every other. This means that the precision of CFp,, is
Ray2 (D, €)=2A—the precision for the convergence function is independent of 8! To bound the accu-
racy, note that because k <g <N—k, the g** largest clock is either = correct clock or lies between
correct clocks. If correct clocks are within O, then the new clock is no more than & away from a
coneét clock, so we conclude that the accuracy of the algorithm is 0g,,(8)=3.

Clock synchronization algorithms based on Byzantine Agreement are described in [Lamport &
Melliar-Smith 84] and analyzed in [Lamport & Melliar-Smith 85).

5.3. Fireworks Agreement: An Optimization

When CFjp,, is used as a convergence function, only the largest k+1 clocks are actually needed.
(Only the k+1* largest clock is returned, but to decide which clock is the k +1* largest. the k+1 larg-
est clocks are needed.) Since performing a Byzantine Agreement can be costly—in both delay and
number of messages exchanged—avoiding Byzantine Agreements on the other clocks is desirable.
We, therefore, propose a somewhat weaker form of agreement to take the place of the Byzantine
Agrecments used in connection with CFp,,. This new form of agreement. which we call a Fireworks
Agreement, effectively allows correct processors to agree on the value of a single correct clock by
causing all to terminate the protocol at approximately the same (1eal) time:

FW: All correct processors terminate with some a priori decided value v within B real
seconds of each other.

The name Fireworks Agreement is in analogy with a public fireworkss display, where participants
agree on when the display is over. In a fireworks display, f is non-zero if observers are different dis-
tances from the pyrotechnics; in a distributed system, f is related to message-delivery times.

In describing a protocol to implement Fireworks Agreement, we will assume that it is possible

for a correct processor to
Al: authenticate the sender of every message it receives and
A2; to determine whether a message it receives was modified by processors that relayed the
message.

These assumptions are satisfied if digital signatures are employed by the sender of a message or if
fewer than 1/3 of the processors are faulty and the simulated authentication technique of [Srikanth &
Toueg 84] is used to transmit messages. In either case (i) faulty processors are unable to masquerade
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as correct processors and (ii) faulty processors are unable to modify and then retransmit messages
received from correct processors.

The following protocol implements a Fireworks Agreement for a message with value T. The
protocol is specified for a processor p and described as two rules, each of which might be imple-
mented as a separate process. The term "sufficient evidence" of rule (2) is defined below.

(1) When Ep(t)=T. processor p signs and broadcasts (T, p) to all processors (including itself).

(2) Upon receiving "sufficient evidence", p broadcasts that evidence to all processors and ter-
minates the protocol.

Two different schemes have been proposed for determining when there is "sufficient evidence" as
required in rule (2). Before turning to the details of these, we show that any scheme satisfying the
following properties leads to termination of the protocol by all correct processors within
B = I'nax/(1—-p) real seconds:

Achievement of Sufficient Evidence: Some correct processor eventually determines that there
is "sufficient evidence".

Criterion for Sufficient Evidence: Evidence that is considered sufficient by a correct processor
p and rebroadcast is considered sufficient by any correct processor receiving that broadcast.

According to Achievement of Sufficient Evidence, eventually some correct processor will deter-
mine that there is "sufficient evidence". Suppose p is the first to terminate and does so at real time
¢tsat- According to rule (2) above, it must have broadcast its "sufficient evidence" to all processors. In
the worst case, there are no other undelivered messages in the network when p makes that broadcast.
Thus, p’s "sufficient evidence" can take as long as T /(1—-p) real seconds to be received by another
correct processor ¢ and therefore can be received as late as real time ¢4+ e/ (1-p). According to
Criterion for Sufficient Evidence, ¢ must also consider this "sufficient evidence", and, according to
rule (2), terminate the protocol. Thus, by .4+ mae/ (1-p) all correct processors have terminated the
Fireworks Agreement and we conclude P=T g,/ (1—p).

Independent of the refinement of "sufficient evidence", Fireworks Agreement is used in con-
structing a convergen.ce function CFyw as follows. For the i** Fireworks Agreement, we use
T=(~1)R where (as in section 2)

Tmin S Rh < Rh Sr
(+p) (1-p)

And, for the value of CFgw(p, ...) associated with the i** Fireworks Agreement we use:
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CFpw(p, G (15)+v, ... En(th)+V) m ({=1)R+T g +v for 0Sv. é.1)
Note that Monotonicity and Translation Invariance hold for CF gw by definition.
To bound precision ngw (8, €) of CF g, substituting into the definition of precision, we get:
%rw(B,€) 2 1CFpw(p, €1 (1), ... EN(E)) = CFrw(g, €1 (85, ... En(eE)1. (5.2)
Without loss of generality, suppose ¢} <t} so that due to Monotonicity (5.2) simplifies to

(8,6} 2 CFrw(p, E1(tg)h . ENUY)) = CFEw(q. 1 (), ..o ENCED). (5.3)

Using (5.1) with v=(¢f —15)(1+p) we get:
CFrw(p, &1 (5)+(tg=thX14P), ..o EN(E)+(tq~th)A+P)) = (i =1)R +Tpe +(t=1)(14p). (5.4)

Equatior: (5.4) is now simplified as follows. First, because ¢, (t5)<¢ (¢5)+(ti—£L)(1+p) due to Vir-
tual Rate (2.4), we conclude using Monotonicity that

CFrw (P 1 (th)s ..., ENEQ)) S CFrw(p, €1 @)+ (5= th)1+p), ... ENtL)+(th ~th )1 +P)).
Therefore, transitivity with (5.4) yields,

CF pw (@ €1 (th), s EN(EG)) S (I=1DR +T gy +(t5 ~ 15 )(14).
By definition of B, t;—; <B. Making this substitutior. into the previous equation results in

CF (@, E1(th)s s EN(ED) S (i=1DR +Topar +B(1+).
Substituting this into (5.3) gives a bound for xzw(9, &):

w8, €) 2 (=R +Tmax +B(1+p)) — CF rw(q, €1 (tg), ..., EN L)) (5.5)

By definition (5.1), CFrw(q,C1(th),.... EN(t)) ® (i=1)R+Tpyr. We use this to simplify (5.5)
further, obtaining

Tew(8,€) 2 ((E=DR+Tmax +B(146)) = (((=DR+T z)
2 B(1+p)

r Y
2 —(1+p).
1-p

Sufficient Evidence

One characterization of "sufficient evidence", which is the basis for the clock synchronization
protocol of [Halpem et al. 84), exploits the fact that the clock at a correct processor must be within 3
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of the clock at any other correct processor.!!

SEl: Receipt of a message m=(T, g) oy p is considered sufficient evidence iff m is correctly
signed by 521 processors and received by p &t rea! time ¢,., such that

T=5 3+ i) S &, (trey) S T+5 (B4 Ty). (5.6)

To show that SE1 satisfies the Criterion for Sufficient Evidence, suppose a Fireworks Agree-
ment terminates at p at time E,(xm) due to receipt of a message m. Thus, (5.6) hclds. We must shiow
that (3.6) will hold whenever m is forwarded to another correct processor g. Thus, we must show that

T~(s+1) 3+ mia) £ &¢(trex2) € T+ +1) (34 Tpnay)
holds, where ¢,., is the timehthat q received the copy of m forwarded by p. Since p and ¢ are both
correct, | C,(tpey)—~Co(trey)| S8. Therefore, we can rewrite (5.6) in terms of ¢ ¢(t,c)

T—5 (B+Tonin) = S &y (tycy) S T+5 (84T es) +5. .7
Since at real time ¢,,,, p forwarded the evidence to g, by the definitions of I',,;, and I, we have

Coltrev)+Tmin S Cqltrer2) S €¢(trev)+Mimax. (5.8)
We can now substitute in (5.8) for ¢,(¢,c) using (5.7) and obtain

Tw5 (B4 Toyin)=0+Tin S E4(tres2) S T+5 (34 omar)+8+ Fonars
which, since the copy of m forwarded to ¢ by p contains one more signature, imphes (5.6).

It only remains to show that SE1 is eventually satisfied, hence Achievement of Sufficient Evi-
dence holds. The argument is simple. A correct processor executing rule (1) of the protoco! will
receive a copy of the message it has broadcast. This copy wii! satisfy (5.6) because it will arrive
between I',,;, and I, clock seconds after it was sent.

Accuracy ogg; (9) for SE1 is illustrated as follows. Suppose
p is the correct processor with the fastest clock,
q is a faulty (even faster) processor such that ¢ ,(f)—c,(f) = 5, and
ris the correct processor with the slowest clock and therefore ¢, ()¢, (z) = .

Further, suppose g executes rule (1) at time E,_.(t,,.d)=T and broadcasts a message m =(T, ¢). By
definition of p and q, Cp(temq)=T-—d. The message will, therefore, be delivered to p by

""The protocol of [Cristiun er al. 86] also uses a variant of this form of "sufficient svidence”. However, the test used
there is simpler than the one discussed here because their protocol tolerates only omission failures—not full Byzantine
failures.
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T—8+l‘,..-.. < E,(t,.,-.) S T—SH‘,., and p will find the message to be suficient evidence, because it
satisfies (5.6). By definition of p and r, we have

T =8+ =8 € &,(trey) S T=5+Tmax=.

Therefore, when r receives the cop, of the message rebroadcast (according to rule (2)) by p, that time
¢,(tri2) is given by

T8+ in=8+Tin < &,(tres2) S T~ 5+ gy =8+ Mg

The message, therefore, satisfies (5.6) and is sufficient evidence for 7 to terminate. Moreover, since
T8+ iy =8+Tnin S &, (trr2) and according to the protocol {i.e. (5.1)) r must set its clock ahead to
T +T ., r might therefore have to set it ahead by as much as

(T+T ) = (T=5+Tin=8+Tpia).
We conclude

0s5£1(8) = Doax +2(8=Tin).

Accuracy ogg;(0) reveals a problem with SE1: A faulty processor (i.e. g) with a fast clock can
cause clocks at correct processors to reset so that they run faster than they should. (The consequences
of this are quantified in the Appendix.) On the other hand, SE1 has fault-tolerance degree N-1
because it was not necessary to stipi:iate an upper bound on the number of faulty processors,

A second characterization of "sufficient evidence”, first used in the clock synchronization proto-
col of [Srikanth & Toueg £412, is based on the fact that if avery processor broadcasts a message
when its clock reads T, then provi led tuere are at most k faulty processors, the k+1* niessage
received must be from a correct sne or must foilow a message o a cormrect one.

SE2: Receipt of .c+1 messages originated by distinct processors is considered sufficient evi-
dence.

It is easy tc see that SE2 satisfies our Criterion for Sufficient Evidence—even after being forwarded
to another processor, the k+1 raessages used for sufficient evidence at one proczssor are still ori-
ginated by k<1 distinct processors, so the;' will be considered sufficieat evidence at another. Ensur-
ing Achievement of Suffi zient Evidence, requires making an assumption about the number of faulty
processors. SE2 is guara.iteed to hold only if N<2k+1 because then there are fewer than k+1 faulty
processors and at least k+1 correct ones. Thus, fault-tolerance degree k=(N-1)/2,

125 similar scheme was later used in the protoce! of (Babaoglu & Drummond 87].
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The fact that when some processor receives sufficient evidence according to SE2 it must have
received a message from a correct processor means that the accuracy of SE2 is better than that of
SEl. A scenario that achieves worst-case accuracy with SE2 is given by the following. Suppose,

D1+ P2. ..., Pi &re correct processors with fast clocks,
P4 is & faulty processor with a fast clock, and

r is the correct processor with the slowest clock, so (Vi: 1SiSk+1: ¢, (0)=c,(0) = 8).

Further, suppose each processor p;, 1Si<k+1 broadcasts a message when Cp, (fong)=(i~1)R =T.
Thus, these messages are sent at time 8,(:,,.4)-1'-8 and can be received by 7 as early as time
&,(tre)=T =8+ . The set of k+1 messages broadcast by p, through p,,, satisfy SE2, so r must
advance its clock by as much as
CF pw(r, é{ (), 2Rt — (T=8+T o)

=(T+Tmar) = (T—5+T)
and we conclude

0552(0) = Mpax +8=Tin.

Clearly, accuracy with SE2 is superior to that achieved with SE1. This is not without cost, however.
SE2 requires that fewer than hslf the processors are faulty; SE1 makes no assumptions about the
number of faulty processors,

r

E Clock synchronization algorithms based on Fireworks Agreement are interesting because a pro- p
E cessor cannot even evaluate CF without causing every other correct processor tu resynchronize its
I clock. Thus, the convergence function provides an implementation of both RTS1 and RTS2; the con-
t vergence functions discussed earlier provided an implementation of RTS2 only. On the other hand,
; inherent in Fireworks Agreement is that processor clocks are read in the less accurate of the two ways
|

|

o

presented in section 3. Moreccr, While it is possible to achieve precision of 2A using au agreement
algorithm (i.¢, CF py,), CF pw does not come close. The precision of CF rw depends on the maximum
message delivery delay, while precision of CF g, is determined by the variance in message delivery
delay.

6. Discussion and Conclusions

l

’ Ve have discussed clock synchronization protocols that can be viewed as refinements of a sin-

' gle paradigm. The paradigm is based on postulating a reliable time source that periodically issues i

i messages to cause processors to synchronize their clocks. Implementing the reliable time source

| involves solving three subproblems. Different solutions to these subproblems yield different 1
[]
|
!
(
{
X
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protocols.

The first subproblem defined by our paradigm is to generate events that cause all processors to
resynchronize. Any solution to this subproblem can be characterized in terms of three constants: 7 ;.
and r .., bound the real-time interval that can elapse between when the first correct processor 1o
resynchronize for the i* time does so and when the first correct processor to resynchronize for the
i+1" time does so. B bounds the real (ime that can elapse between when the first correct processor
resynchronizes for the i* time and when the last correct processor resynchronizes for the i** time.

The second sutiproblem defined by our paradigm is how a program being executed by one pro-
cessor can read the clocks on another. A solution to this subproblem is characterized in terms of A,
an upper bound on clock reading error.

The final subproblem defined by our paradigm is choice of a convergence funciion. Any func-
tion that satisfies the four properties given in §4—Monotonicity, Translation Invariance, Precision
Enhancement, and Accuracy Preservation—will work. Such a functicn is characterized by its preci-
sion x, which bounds how closely it will bring values together, and its accuracy a, which bounds how
far its result will be from its argument.

If processor clocks run close together but far from real time, clocks implemented by an algo-
rithm based on our paradigm will remain synchronized with each other but will diverge from real
time. In order to construct a clock synchronization algorithm that keeps clocks close to real time, the
reliable time source must remain close to real time. Various intemational standards organizations
maintain highly accurate synchronized clocks. In the United States, WWYV 60 KHz radio broadcasts
provide a time signal accurate to a few milliseconds, as does the GEOS satellite. (WWYV broadcasts
at 5, 10, and 15 MHz are accurate to only 100 milliseconds, due to uncertainty in propagation
delays.) Employing radio receivers to inject such correct real times into a distributed system is one
way to provide the needed source of time. Algorithms for clock synchronization when an external
source of time is available are described in [Marzullo & Owicki 83], [Marzullo 84}, and [Lamport
85].

The fact that so many clock synchronization algorithms can be viewed in terms of a single para-
digm was a surprise. Previously, clock synchronization algorithms were viewed in terms of three
classes: those pased on convergence, those based on agreement, and those in the style of [Halpem ez
al. 84). It was pleasing to discover that all the published algorithms can, in fact, be viewed in terms
of a single paradigm based on convergence functions. In addition, viewing algorithms as refinements
of a single paradigm allows their performance to be compared. Performarice of a clock synchroniza-
tion algorithm based on convergence functions is characterized by x, o, anc the cost of computing the
underlying convergence function. Thus, by defining the notion of a convergence function and giving
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a framework in which its performance can be quaatified, we have made it possible to compare exist-
ing algorithms as weli as given insight into the construction of new algorithms.
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Appendix 1: Proof of Clock Synchronization

This section gives sufficient conditions to ensure that the clock synchronization protocol of Fig-
ure 2.1 satisfies correctness conditions Virtual Synchronization (2.3) and Virtual Rate (2.4). We

assume only the following about the solutions used for the three subproblems left open in that proto-
col.

Event Generation. 7, and r,,, are the lower and upper bounds for the real-time interval that
can elapse between when the first correct processor to resynchronize for the i  time does so and
when the first correct processor to resynchronize for the i+1°* time does so. B bounds the rcal
time that can elapse between when the first and last correct processor resynchronizes for the i
time.

Clock Reading. A is an upper bound on the error assoziated with the value obtained when a
program executing on on¢ processor reads the clock on another.

Convergence Function. CF has precision x, has accuracy @, and satisfies the Monotonicity,
Translation Invariance, Precision Enhancement, and Accuracy Preservation Properties of §4.

To simplify the exposition that follows, p, g, 7, and x are assumed to range over correct proces-
sors only.

Synchronization of Virtual Clocks

To prove that Virtual Synchronization (2.3) is satisfied, we start by establishing that all correct
processors have started their i* virtual clocks by the time the first correct processor starts its i +1*

virtual clock. This is necessary in order to be able to execute the assignment to adj;;,*l in the proto-
col.

Lemma 1: Let t)*! =(minr: £i*!). IfB<r,,, then for any correct processor p, 1Sty

Proof: Letti=(minr: ti). By the definition Of 7 miy in RTS1, rp Sti*! 1. Adding ¢} to both
sides, We get 7min+15Sti*!. The hypothesis that BSr e, implies £h+BSrpn +15, S0 by transi-
tivity 15 +BS7ain+tiStit!. Moreover, from the definition of B in RTS1, ¢} St} +B, so again by
transitivity ¢, Sty +BS 7+ SH. 0

We now prove that virtual clocks that employ instantanecous resynchronization (i.e. AlSx)
satisfy Virtual Synchronization (2.3). Define

To) m cp(t)+adj,.

And, as before, let T,(¢) be the value of T,(t) where i satisfies £,S¢<f,*!. The proof of Virtual

.24.
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L Synchronization (2.3) for E,f is in two steps. The first step (Lemma 2) shows that when the last
T COrL. 2t Processor to start its ' virtual clock does o, the i** virtual clocks at all correct processors
wiil be close together; the second step (Lemma 3) extends this, showing that this implies that correct
virtual clocks will remain close together.

- Lemma 2: If (i) BSrmia

(i) usSs

(iti) ®(Ss+2Bp, 2(B(1+p)+ANSEs

: then (V:i: O<i: ti=max(sh.ti) = IT,(2)~Cp(th) 1 <Bs).

Proof: By induction on i. l
Base Case: (Vi: 0<is1: ti=max(eh.th) = 18,(t5)~Cp(eh) | <Bs).

0<c,(0)su due to Hardware Initial Value (2.1).
0<c,(0)Su  because adj9 =0 (see Figure 2.1).
0z, (0)su same argument for processor q. ]
; 0<Tp(t;)Su and OST, (¢;)Su since 1} =t}=0=max(t;,i})=t}.
: IE,(:,',)-E,(:}) ISu substituting with previous line.
| 18,(th)=T,(t1) S35 due to hypothesis ().
| (Vi 0<iS1: th=max(th,th) = 1T4(eh)=C, (1)1 <Bs).

TN

: Induction Case. As an Induction Hypothesis assume: (
(VI 0<ISi: t=max(th,1h) = 1T, (t)~C,(th)1 SBs). (A1)

According to the protocol of Figure 2.1, the definition of E,‘*‘. and the fact that reading the clock
at another processor has an associated error, we have:

TEE) = CF Q. T (4R (D TR ) 42
TEE) = CRQE] (B A(Ds THE) 42 (V) 4

The arguments to CF in both (A2) and (A3) are defined (and therefore can be computed) due to
Lemma 1 and hypothesis (i). Without loss of generality, assume ¢*! St*!. For correct proces-
sors p and g, we conclude

WO

Eqi*-l(t:*l) < E‘;+l(t:+l)+(t;"+l —t?.l)(l"’p)

PP

due to Hardware Rate (2.2). Using Monotonicity of CF, v substitute for ¢,*!(t5*!) in this for-
mula based on (A3) and obtain

i

q

'

!

|
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’E,"*:‘ (1) S CF(q, T ()M, (1), .o TR HAG(N) + (5 =224 )(14p). (Ad)
Since ¢! —ti*1 <B due to RTS1 (§2), (A4) can be simplified 1o

TG S CF @ F M)A (D . XA A (N)) + B(1+p).
Translation Invariance ullows the B(1+p) term 0 be moved inside CF, resuiting in

Tt S CF@ T (G +BAMPIHAG(D, . T )+B+P)+Ag (V). (A3)

We can now use the Precision Enhancement Property for CF to show that

it =max(rit, £1) = 17¢* (¢£) =T+ (i) 1 <3, as required to establish the Induction Case.
By assumption, £;" <ri*! so it suffices to prove T (f) it (¢ S 85 to establish the
Induction Case. To do so, we first determine constants € and 8 for the Precision Enhancement
Property.

To characterize €, note that due to Hardware Rate (2.2) and the fact that ¢3! —+i*! < B, for
each correct processor a,

B(1-p) S (GG~ )(1-p) S E(ep™)=Ti(eg™) < (5 =10 +p) < BL+p).
Also, from the definition of A,
(Vb: 1A, (b)I <A

Therefore, the difference between the value in equation (AS) of the r** argument to CF and in
equation (A2) for any correct processor a can be at most e=2(B(1+p)+A).

To characterize & of the Precision Enhancement Property, note that by Induction
Hypothesis (A1) we have for correct nrocessors g and b

ti=max(ei, 1) = 18,(th)—c,(th) . <3s. (A6)

Without loss of generality, assume ¢/(*4)SZE(ti). Thus for the a®* and b arguments to CF in
(A2):

R A S (R

= T4, -Ca(tp™) |

< T+ =) (1+p) = AU +(S —tL)(1-p)) due to Hardwai > Rate (2.2) since
ti<et! by Lemma 1.

< Th(e)-ca(th)+23p algebra and the definition of p.

< 8s+2Pp due to (A6).

Using (AS) to characterize €,*! (1;*!) and (A2) to characterize T} *!(¢*!), we get

IEH ) =c i ()1 S CF(q,ei (5 ) +B(1+p) +Aq (1), ... TH(E ) +B(1+p)+A, (V)
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= CFQ,ci(ts)+Ap (..., THULT)+A,(N))

4 n(-8-s+2|3p. 2(B(1+p)+A)) by Precision Enhancement Property

< & by Hypothesis (iii).

This completes the Induction Case. a

Lemma3: If (i) P<S7pa
(i) usds
(iii) ®(Ss+2Bp, 2(B(1+p)+A)) < B¢
(iv) Os+20(Fmax+PB) SO
(V) O(Bs+2p(Fmex+P))+20P< 8

then (Vr: 0<t: 1T,(6)=Cp(1) 1 S9).

Proof: The conclusion of the lemma is equivalent to
(Viz 0<i: (Ve: max(eh,5)Se <min(eh™, e5*1): 1T5(0)-CL(0)1<B)) A (A7)
(Vi: 0<i: (Ve min(it eit) st <max(ef*, eit): :::,*'s:;:,“ = |E,;:+‘(:)—.E;(:):s§,\

el i = 1Ti0-5,1 (0)159)

(A8)

We first prove (A7). Due to hypothesis (i) — (iii) we can use Lemma 2 to conclude:

(Vi: 0<i: th=max(th,th) = 1T,(:5)~T,(t) 1 <5).
According to Hardware Rate (2.2), correct clocks drift apart no more than 2p clock seconds/real
second, and therefore

(Vi: 0<iz (Ve: max(eh,i)<e: 1Ti(1)~T(0)! SBs+2p(e—max(th, 5))).
This implies

(Vi 0<i: (Ve: max(eh,th)Se<min(eit (i) 1850 —Ti(0) 1 SBs+2p(rmaxtB)).  (A9)
because 7 iy~ B<min(et, 65
(A9) can be simplified to

)—max(t), t)S7 max+P due to RTS1 (§2). Using Hypothesis (iv),

(Vi 0<iz (Ve max(eh, t)Sesmin(ei! 41y 1T5@)-cj(n)1 SB)),
which implies (A7) as desired.

To prove (A8), without loss of generality we assume that ti*!<s*!. Thus, (A8) is
equivalent to

(Vi: 0<i: (Ve: min(i* o5 Se <max(ey ety 185 () i(0)1 <0)) (A10)
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and it suffices to prove that. To do this, we infer from (A9)

Wiz 0<i: (Ve t=min(it!, eit): 1Ti0)=Ei (1)1 S 85 +2p(r pax+ ). (Al1)
Thercfore, we can take 8 in the definition of accuracy o to be 3=3, ~+2p(ﬁm+ﬁ) and using the
Accuracy Preservation Property obtain a bound for how Zg*!(¢;*") difters from any argument to
CF used in calculating T, (¢5*). Since €i(¢5*")) must have been such an argument:

(Vi: O<iz (Ve t=min@eie1): 1T (-0 S aBs+20(r max +B)).
‘This implies thut
(Vi 0<is' (Ve min(eit!,eih)se: I A1)
1T () =CL0)1 S alBs+2p(7 max +B))+2p(2 —min(r*, 1))

due to Hardware Rate (22). From the definiion of § in  RTSI,
0smax(j, 6ty —min(g*, 5*1) <P, so equation (A12) implies
| (Vi: 0<i: (Ve: min(ht!, o0t )Se <max(eit,eith): ¢
l 1T (1) -Ci(0)1 S0UB5+2p(F max+B))+20P)).
¥
Substituting for (S5 +20(" mas +B))+2pP)) according to Hypothesis (v} vields
(Vi: 0<i: (Ve min(st, i) se <max (it efh): 185 ()—2(0) 1 <8))

as was required (i.c. (A10)) in order to prove (A8). a

The previous lemma established that virtual clocks using instantaneous resynchronization
satisfy Virtual Synchronization (2.3). We now prove that virtual clocks using contineous resynchron-
ization also satisfy Virtual Synchronization (2.3). Define ai t0 be the maximum number of real
seconds it takes for adjustment interval A/ to elapse at any correct processor. Thus, ai=Al/(1-p).

Further, define a fixed clock ¢, to be a function from real time to clock time satisfying'>
FCl: (Ve: ;' +ai<t: €} (1)=c,;* (1)) and
FC2: (Ve e sestit +ail: ¢ (e [C(0), T, (D).

Thus, outside of its adjustment interval, the value of ¢,*(¢) is the same as ;*!(:); and during its

adjustment interval, the value of ¢,*!(¢) is guaranteed to lie between the value of ¢ () and T5*!(¢). !

From FCl and FC2, we conclude that in order to prove for any given D \
(Ve: 0St: iE,()=Cq(t)! SD), we must establish |
\

3We use the notation x€ [a,b ] 0 denote min (a,b)$x Smax (a.b).
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(Ve: 1 Se<th?? At Se<tf??: 153 (0)-C§* (1)1 <D) and (A13)

(Vi g seseit vai At St +ain 1T,(0)-¢{()ISD A
1 (0)-c§(1)1 SD A (A14)
1ci(e)-ci* (1)1 SD).

Since according to definition (2.5), a virtual clock ¢, satisfics the definition of a fixed clock, by
choosing & = a(8+2p(ai)), the following theorem proves that Virtual Synchronization (2.3) holds for
virtual clocks that use FIX to implement continuous resynchronization.

Theorem 4: If (V1: 0St: 1T,(1)-C,(¢)! SB)
then (V1: 0S¢t 18,(1)=Cq(0)! S 0(3+2p(ai))).
Proof: The result follows if we prove (Al13) and (Al4) for D=0(8+2p(ai))). Using the
definition of ¢, we rewrite the hypothesis of the theorem as:
(Ve <<ttt Al i<t 1Ti(0)-Ti()1 $D). (A15)
This implics (A13) if 3So(S+2p(ai)). To see that dSa(d+2p(ai)), first note that 8<3+2p(ai)
since 0<p and 0<ai. The result then follows because d<0i(d) due to (4.1).

All that remains is to prove (A14). Due to Hardware Rate (2.2), ¢; and T§ can drift apart
by at most 2p seconds per second. Therefore, we can extend the range of (A135) as follows:

(Vt,: i<t <t vai A hSe<eft +aiz 1T(1)-TJ(1)| S5+2p(ai)). (A16)
By definition, £} <t5*! <ti*! +ai and t} <#§*! <#}* +ai. So, from (A16) we conclude

(Ve BN se<eit vai ath S <t vais 1TIO-Ti()1 S8+2p(ai)). (A17)
From property (4.1) of &, 3+2p(ai)Sad+2p(ai)), so

(Ve g s <tit vai At Se<tf wait 1T -TE)) Sa@+2p(ai). (A18)

According to the Accuracy Preservation Property using 8=5+2p(ai ) due to (A16), and
using the same argument as was used to change the range of (A15) to get (A17), we conclude:

(Ve st <t vai At St <t +air 15 (D-TJ(0) 1 SaB+2p(ai)) (A19)
Ve g sr<et vai At e <t vaiz 1E50-811 (1)) Sa®+2p(ai)) (A20)

We can now combine (A18), (A19), and (A20) obtaining (A14) with oz(3+2p(ai))=D. This,
then, completes the proof. a
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Rates of Virtual Clocks

To prove that virtual clocks satisfy Virtual Rate (2.4), we first require the following technical

lemma.

Lemma §: If €20 then (max x,y,2: min((x+€&)-y,z) - min(x—y,z)) S €.
Proof: First, suppose z<x-y. This implies that min(x—y,z)=z and that z<(x+€)-y. Conse-
quently, min((x +€)—y,z)=z. This means that when z<x -y,
min((x+¢€)—y.z) - min(x~y,z) =z2-z = 0.
Next, suppose z >x-y. This implies that min(x-y,z)=x-y. Therefore,

min((x+£)-y,z)-min(x—y,z)
=min((x+€)-y,2)~(x—y)
=min((x+€)~y —(x=y), z—(x—y))
=min(e,z~x+y)
<e

Since when v <€ then max(0,v)<¢, the lemma follows. a

We are now able to prove that virtual clocks have rates that satisfy Virtual Rate (2.4).

Theorem 6: If (i) O<xsk
() 18,()-5,01 <8

(iii) (1+p)[1+%§—?—] < (1+p)

(iv) (1-p) < (I—p)[]-Lﬁl]

. Cot+X)~C,(t
then0<1-psc’( 3 o0

~

S 1+p forOse.

X

Proof: Let i satisfy ¢, <t <eit!. Consequently, &,(1)=C,(s). Observe that r+ks<tj*! because
otherwise we would have

thSt <t <t+k,

which would imply that p started E;*’ between two virtual clock ticks, contrary to the protocol of
§2.
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We are interested in bounding

_Eé(wfc)-&;(:)

X

[4:,(r+v‘c)+nx;',(c,(z+v‘c))] - [c,(:)+nx;(c,(:))]

X

. ep(t+R)=cp () +FIX}(cp (1 +R) - FIX}(cp (1))

(A21)
K
First, we derive an upper bound for (A21). For a correct processor p, we have
cp(t+80)—cp(t) S (14p)k (A22)
from Hardware Rate (2.2). According to the definition of FIX, (in §2), we have
. . . (adji - adji Xmin(c, (¢4 K)—c, (), Al
FIX)(c,(t+%) = adji™'+ (adjp = adjy )(mm‘(:;,, (4106, (t5). AT))
: . (adji — adji Ymin(c, () =c,(th), Al
FIXi(c,(®) = adji'+ (adjp — adjp X ':f"( )=Cp{p): AT))
Therefore,
FIXi(cp(t +K)=FIXp((cp () =
(adj}—adji™ Ymin(c, (t+R)~c,(6h), AT) — min(c, (t)-c,(th), AD) (A23)
Y .
Letting
X+€ = Cp(1+K)
x=cp(h)
y = cp(tp)
z=Al

due to Hypothesis (i) and the fact that hardware clouks are non-decreasing, we have €20. Thus,
we can apply Lemma 5 to infer from (A23):
(adjp—adjy ™' )(E)

FIX}(cp(t+R)~FIX}((cp(t)) S Vi

(adji—adj5™ )cp(t+R) =, (1))
Al

s
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< (adji—adji ' X(14p)K)

A24
a7 (A24)

Substituting into  (A21), using (A22) for c,(t+K)-c,(r) and (A24) for
FIX}(cp(1+K))=FIX}(cp(r)) we get

cie+%)—c} adji —adji!
% Al

According to (4.2),
—a®)s1adji-adji | sa(d) (A25)
since Hypothesis (ii) stipulates that virtual clocks are synchronized to within F Therefore,
—-————’——c’(m?-c ® < (1+p) [1+——]°‘$) :
X

Thus, using Hypothesis (iii) and transitivity, we get

CAE+R)=Ci()
'S

< (1+p)

as des’ _d.
Next, we derive a lower bound for (A21). According to Hardware Rate (2.2), we conclude
i—p)K £ c,(t-i-fc)—c,(t). (A26)

Usi- e same argument as above with —c(8) as the lower bound for the value of adj},—adj;™!
(due to (A25)), we get

[ o] L SiesR-Eim
1—p)f1- < .
(=) Al _I =

Thus, using Hypothesis (iv) we get

s CA(E1+DO=Ci1 0
1-p) £ =
(1-p) -

as desired. a
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Appendix 2: Glossary of Notation

The section in which each term is defined appears in parenthesis at the end of the entry for that term.

Maximum number of real seconds in adjustment interval over which resynchronization is
spread (Appendix 1),

Number of clock seconds in adjustment interval over which resynchronization is spread
(82).

&5(t) = cp(t)+adj} except during the adjustment interval (§2).

Hardware clock at processor p (§2).

Virtual clock at processor p (§2).

i'* virmal clock at processor p (§2).

Virtual clock at processor p using instantaneous resynchronization (Appendix 1).

Fixed clock at processor p (Appendix 1).

Correction factor to spread ad;; ™ —adj} over Al and transform c, into &, (§2).
Minimum real time between successive events produced by the reliable time source (§2).
Maximum real time between successive events produced by the reliable time source (§2).
Resynchronization interval in clock seconds (§2).

Real time p starts ¢, (§2).

Real time the reliable time source generates the i™ event (§2).

Value provided by reliable time source to p for starting ¢, (§2).

Accuracy of convergence function CFy (§4).

Maximum real time delay between generation of an event by the reliable time source and
detection of that even by a correct processor (§2).

Maximum delay according to the clock at any correct processor to send a message from one
processor to another (§3).

Minimum delay according to the clock at any correct processor to send a message from one
processor to another (§3).
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Difference betwaen any two correct virtual clocks (§2).

s Bound—at the instant both have been started—on the difference hetween any two identi-
cally superscripted correct virtual clocks that use instantanecus resynchronization (§7).

K Real time tick width for ¢, (§2).
S Real time width of a tick by ¢, (§2).
»(¢)  Bound on error in p’s approximation of &q (§3).
A Maximum clock reading error for any paig of processors (§3).
mn Upperbound on ¢, (0) (§2). ’
nx (9, €) Precision of convergence function CFy (§4).
p Upper bound on ¢, drift rate (§2).
p Upper bound on ¢,, drift rate (§2).

tilg]  Approximation of £{(z;*)~cp(r) (§3).

Acknowledgments

Discussions with Ozalp Babaoglu, Steve Mahaney, Leslie Lamport, and Sam Toueg have been helpful. In addition, I
am grateful to Jacob Aizikowitz, Ozalp Babsoglu, David Gries, Keith Marzullo Mike Merritt, and Rick Schlichting for use-
ful comments on an earlier versions of this paper. The notions of accuracy and precision were developed jointly with Steve
Mahaney under a consulting agreement with AT&T Bell Laboratories.

References

[Babsoglu & Drummond 87] Babaoglu, O. and R. Drummond. (Almost) no cost clock synchronization. Proc. Seventeerah
International Symposium on Fault-tolerant Computing, Pintsburgh, Penn., July 1987, IEEE Computer Society.
4247,

(Bevington 69] Bevington, Plilip R. Data Reduction and Error Analysis for the Physical Sciences. McGraw-iill Book
Company, New York, 1969, p. 3.

-




F,'

»®

"

[Cristian ¢ al. 86] Cristian, F., H. Aghili, and R. Stong. Clock synchronization in the presence of omission and perfor-
mance faults, and procestor joins. Proc. Sixteewh Inisrnational Symposium on Fault-tolerant Computing,
Vienna, Austria., July 1986, IEEE Compater Society, 218-223,

{Dolev 82) Dolev, D. The Byzantine Generals strike aguin. Jowrnal of Algorithms 3 (1982), 14.30,

[Dolev et al. 83] Dolev, D,, N.A. Lynch, $.S. Pinter, E.W. Stark, and W.E. Weihl. Reaching approximate agrsement in the

presence of faults. Proc. Third Symposium on Reliability in Distributed Sofiware and Database Systems, Oct,
1983, IEEE Computes Society, 143-154.

[Fisher 83) Fischer, M. The consensus problem in unyeliable distributed systems (a brief survey). Proc. International
Conference on Foundations of Computation Theory, Borgholm, Sweden, August 1983.

{Halpern ¢t al. 84] Halpern, J., B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchronization. Proc. of the
Third ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver, Canada, August
1984, 89-102,

[Kopetz & Ochsenreiter 87) Kopetz. H. and W. Ochsenreiter. Clock synchronization in distributed real time systems.
IEEE Transactions on Computers C-36, 8 (August 1987), 933-940.

[Lamport 84] Lamport, L. Using time instead of timeout for fault-tolerance in distributed systems. ACM TOPLAS 6, 2
(April 1984), 254-280,

[Lamport §5] Lamport, L. Notes on a time service. Preliminary Report, DECSRC, Palo Alto, CA, Nov. 1985,

[Lampont & Melliar-Smith 84] Lamport, L and P.M. Melliar-Smith. Byzantine clock synchronization. Proc. of the Third
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver, Canada, August 1984,
68-74,

[Lamport & Melliar-Smith 85] Lamport, L. and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults. J.
ACM 32, 1 (Jan. 1985), 52-78.

(Lamport et al. 82} Lamport, L., . Shostak, and M. Pease. The byzantine generals problem. ACM TOPLAS 4, 3 (July
1982), 382401,

{Lundelius & Lynch 84] Lundelivs, J. and N. Lynch. A new fault-tolerant algorithm for clock synchronization. Proc. of
the Third ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver, Canada,
August 1984, 75-88.

[Mahaney & Schneider 85] Maheney, S.R. and F.B. Schneider. Inexact agreement: Accuracy, precision, and graceful
degradation. Proc. of ihe Fourth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Minaki, Ountario, Canada, August 1985, 237-249.

[Marzullo & Owicki 83] Marzullo. K. and S.S, Owicki. Maintaining the time in a distributed system. Proc. of the Second
ACM SIGACT-SIGOP3 Symposium on Principles of Distributed Computing, Montrcal, Quebec, Canada,
August 1983, 295-30S.

{Marzullo 84] Marzullo, K. Maintaining the time in a distributed system. An example of a loosely-coupled distributed ser-
vice, Ph.D. Thesis, Department of Electrical Engineering, Stanford University.

[Mills 85] Mills, D.L. Experiments in neswork clock synchronization. ARPANet RFC957, Sept 1985.

[Schneider 85] Schneider, F.B. Paradigms for distributed programs. In Distributed Systems. Methods and Tools for
Specification, M. Paul and H.J. Siegert, eds. Lecture Notes in Camputer Science, Vol. 190, Springer-Verlag,
Berlin, 1985, 432443,

[Srikanth & Toueg 84] Srikanth, T.K. and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerait
algorithms. Technical Report TR 84-623, Department of Computer Science, Cornell University, Ithaca, New
Yark, July 1984,

[Srikanth & Toueg 85] Srikanth, T.K. and S. Toueg. Optimal clock synchronization. Proc. of the Fourth ACM SIGACT-
SIGOPS Sympesium on Principles of Distributed Computing, Minaki, Ontario, Canada, August 1985, 71-86.

-35-

%
g
|
b
3
3
y

A0 O0ODNIO N DOLONK SOOI O



